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WITH FLEXTBLE RINGS

By Harvey G. McComb, dJr.
SUMMARY

Equations are derived for the stress distributions caused by three
types of loading on infinitely long, clrcular, semimonocogue cylinders
with flexible rings. These external loads can be said to lie in the
sheet-stringer surface of the cylinder; that is, they have no radial
components. The results, given as formulas for the stringer loads and
shear flows in the shell, are of use in the stress analysis of clrcular
semimonocoque cylinders with cutouts. In order to facilltate thls appli-
cation, the formulas can be used to construct tables of influence coef-
ficients giving stringer loads and shear flows in the neighborhood of
each particular external load due to a unit magnitude of that load.

INTRODUCTION

An sirplane of semimonocoque construction usually has wvarious
openings for doors, cargo hatches, landing-gear mechanisms, and other
purposes. The structural design of the alrplamne near such openings
requires knowledge of the stress distribution sbout cutouts in semi-
monocoque shells. Stress analysis of semimonocoque structures with
cutouts is beyond the scope of engineering beam theory because siress
concentrations occur in the neighborhood of the cutouts. It is for
this reason that more powerful methods of analysis are sought.

A method for the stress snalysis of sheet-stringer panels with cut-
outs has been presented in reference 1. The method is based on the
idea introduced by Cicala (ref. 2) that the effect of the cutout can be
reproduced by superposing certaln perturbation stress states on the
stresses which would occur in the structure without a cutout. Three
types of "unit perturbation solutions" were obtained, and it was shown
how these solutions could be used to handle cutouts in sheet-stringer
panels under axial loads.
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It is evident that this approach can be extended to the analysis of
stresses around cutouts in circular semimonocoque cylinders. In order
to make the extensilon, however, perturbation solutions for this type of
structure must be developed. Accordingly, the purpose-of this report is
to derive the perturbation solutions for an infinitely long circuler
cylinder of semimonocoque construction. These solutions are the stress
distributions due to three types of-loads analogous to those discussed
in reference 1. The particular applied perturbation loads for this
structure are shown in figure 1. In the axialysis for the stresses due
to these loads, bending flexibility of the rings in their own planes is
taken into considerstion. ;

The use of these perturbation solutions in the stress enalysis of
circular semimonocoque cylinders with cutouts is described in detail in
reference 3.

SYMBOLS
A cross-sectional area of stringers
Ap = 3B52 - 1 + cos 1d
Ayifn(i
oy = 2ifn(t) - @22
2L sin %?
G bt ;2
B, = 3852 + 2(1 - cos nd)
b arc distance between stringers, RS
£ (1
bpi = - By3fp(1) (n 2 2)
2Lsinr:?—8

Ht

L2 X
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_2(py - 1)
7
Dy, = =

(rm + n)2 E}m + n)° - i]

coefficient in trigonometric series for 503

Young's modulus of elasticity

tangential force on ring i uniformly distributed between
stringer J and stringer j + 1

coefficient in trigonometric series for stringer loads

shear modulus of elasticity

Hy(n,8) = :Ei: Dy cos{rm + n)@

Tr=e00

Ho(n,@) = :gi: (-1)Dyy, sin(rm + n)@

e OO

k,%,r,s

M(1,8)

moment of inertia of ring cross section

longitudinal index, indicating stations (where rings are
located) and bays

has the value 1 when r 1is an integer and has the value O
when r 1is not an integer

circumferential index, indiceting stringers and panel rows
integers

distance between rings

bending moment in ring i

total number of stringers in the shell, m 2 3

index of the terms in a trigonometric series
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P external concentrated force in the longitudinal direction
applied to a stringer at 1ts intersection with a ring

Pij stringer load in stringer J at ring station i

Q external shearing force per unit length applied about a
shear panel _ =

a3 shear flow in shear penel (i,J)

R radius to middle surface of sheet B

S external force in the longitudinal direction uniformly

distributed along that portion of a stringer which lies
between adjacent rings

Sp = :E:: Drn®

=00

T(1,8) thrust in ring 1
t thickness of sheet
U total stress energy
v(i,®) transverse shear in ring i
Cins%ons
arbitr constants
%302 Mn s
2
L + 3 L ) —
sin2 %?
Bn = 3 + - .
1268, -~
1.3 _BF
2 sin2 D
7n = -2 + -
12CSy
Agg second central difference in the i=-direction or longitudinal

direction, that-is, Asgg(i) = g(i + 1) - 2g(1) + g(1 - 1)

‘I

e

LA
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5 central angle between stringers, 2x/m
Srg Kronecker delta, takes the value 1 when r =8 and takes
the value O when r # 8
gn = ie_WH
Aqpsboy quantities defined immediately following equation (21)
@ angular coordinate for rings
S L ogeg-l|Pn- 1 \/Bn+12 2
Xp = 7 cos 5— = (2 >"7n (Dp > 1)
I 5 —
=-]2'—cosh'l an-l_Kﬁna'" l> "7112 (D < 1)

- + 1\2
cosh~1 Bn2 1 + V(ﬁnz ) _ 7n2

(VP

¥n

BASTIC ASSUMPTIONS

A typical portion of a structure of the type discussed in this
report is illustrated in figure 2. It consists of a thin-walled circu-
lar cylinder stiffened by stringers in the longitudinal direction and
by rings in the circumferential direction. The structure is infinite
in length.

The analysis in this report is based on the following assumptions
regearding the properties of the structure:

(2) The stringers are uniform and equelly spaced around the shell,
and the sheet is of constant thickness.

(b) The stringers carry only direct stress. The sheet takes only
shear stress which is constant within each bay; thus, the stringer
stresses vary linearly between rings.

(c) The rings have a finite bending stiffness in their own planes,
but they do not restrain longitudinal displacements of the stringers.
The ring bending 1s inextensional.
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(4) The difference between the radius of the neutral exis of the
rings and the radius of the middle surface of the sheet is negligible.

ANATYTICAL APPROACH

Equations for the stress distributions arising from the three per-
turbation loads illustrated in figure 1 are derived in this report. The
perturbation loasd shown in figure 1(a)} is a concentrated force in the
longitudinal direction epplled to one stringer of-the shell at-a ring
station. In figure 1(b) the perturbation load shown is a force in the
longitudinal direction uniformly distributed along the portion of one
stringer of the shell between adjacent rings. Finally, the perturbea-
tion loed shown in figure 1(c) consists of forces uniformly distributed
on the portions of stringers and rings which border one shear panel of
the shell, the forces acting in such a manner as to cause pure shear
in that panel These three loads will be called, respectively, the
concentrated, the distributed, and the shear.perturbation load.

A detailed explanation of the use of these perturbation loads in
the stress analysis of circular semimonocoque cylinders with cutouts 1s
presented in reference 3. Very briefly, the idea is as follows: The
cylinder is analyzed by any applicaeble method with the assumption that
the cutout does not exist. Then a system of perturbation loads is
applied to the shell without the cutout, and these loads are adjusted
in magnitude to force the boundary conditions at the cutout to be
satisfied. Stresses are obtained by superposing the perturbation stress
distributions on the stresses which would exist in the structure without.
a cutout. The method is sufficiently versatile to handle the effects of
reinforcement ebout the cutout.

The perturbation solutions will be obtained by use of the principle
of minimum complementary energy. This principle states that, among all
possible stress distributions in the structure which satisfy equilibrium
and the boundary conditions on stress, the distribution that most nearly
satisfies compatibilility is the one which minimizes the complementary
energy =n* where

n* = Internal energy - Work done by surface stresses acting through the
prescribed displacements

(1)

Since displacements are not prescribed anywhere on the structure, the
second term on the right-hand side of equation (1) is omitted. The com-
plementary energy becomes the internsal energy or stress energy of the
structure. : —

Y
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In writing the equation for the stress energy, the following factors
are considered: +the energy of axial distortion of the stringers, the
shear energy in the sheet, and the bending energy of the rings in their
own planes. In figure 2 are shown the index systems used to designate
stringers, rings, bays, and panel rows. Note that the lntersection of
ring i and stringer J occurs at the lower left-hand corner of shear
panel (i,3). Bach of the perturbation loads is shown in its positive
sense in figure 1. Sitringer loads are taken as positive in tension.
Shear flows are positive as shown in figure 3. Ring bending moments,
shear, and thrusts are placed on the ring element in figure 3 in the
positive sense. With this index notation, the stress energy in the
structure can be expressed as

o0

- | | |
R3L
U= i_zm g%@ua + P13P141,§ + Piel,55) * oop qua:l +

i foat % M2(1,8)ap (2)

=

where the integration over the length of a stringer between adjacent rings
has been carried out.

In the anslysis to follow, stringer loads are expressed in the form
of a finite trigonometric series. Then, by using the equations of statics,
the shear flows and ring bpending moments are written in terms of the
coefficlients of this trigonometric series. The expression for stress
energy, equation (2), is minimized with respect to the coefficlents of
the trigonometric series for stringer loads; then, the expressions for
the stringer loads, shear flows, and ring bending moments are substituted
into the resulting equation. This process yields a fourth-order finite-
difference equation which can be solved for these trigonometric coeffi-
cients. The solution is then substituted back into the original expres-
slons for stringer loads, shear flows, and ring moments to yleld the
desired distributions.

For convenience in application, the significant equations are col-
lected in gppendix A.
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PERTURBATION LOAD SOLUTIONS

Concentrated Perturbation Load

Expression for stringer loads.- The concentrated perturbation load
is shown in filgure 1(a); let P represent the magnitude of this load.
Since the structure is uniform and infinitely long, half of-the load
goes intc the portion of the structure to the right—of the ring station
where the loasd is applied (ring i = 0), and half goes to the left of
this ring station. Therefore, it can be seen from figure 1(a) that,
because of symmetry,

P13 = -P.i,} (121 (3a)
Uy = Aeg-1, (1 20) (3b)
M(1,8) = -M(-1,0) (1 20) (3c)

Consider the right half of the structure, including the ring at-
i = 0. The concentrated perturbation load gives rise to stringer loads
which are circumferentially symmetric about stringer j = O (see fig. 1(a)).
Thus the stringer load distribution can be represented by a series of the
form ’

143

m m-1 -
> or 5 ’;
Pyj = E fn(l)cos n3d (%)
= ) .
m m-1
—_ O ———
2 i 2
where the notation E means that the summat@on is carried over n
n=0

m - 1

from n=0 to n = g if m 1is even and to n = if m is odd.

Evaluation of - £o(i), fy(i), and fn(0).- Suppose thet equation (%)
is multiplied by cos 16 and summed over J from O to m - 1. This
procedure ylelds ' ’ ' - .

fg; pijy cos 138 = -:E: (i) %{% cos n}d cos 130 ‘
J= n=0 'j=0



&

NACA TN 3199 9

The sum over Jj on the right-hand side is, for 0 < n g% end 0% 1< g
nz cos njd cos 135 = O (1 # n)
J=0
=27 + Bno+t 5 _m (1 = n)
2 n,=

Thus the coefficients of the trigonometric series in equation (&) are

M=
2
fn(i) = T3 . Pyj cos njd (5)
+ —
et

It is desirable first of all to evaluate those £ (1)'s which can
be found from consideration of the boundary conditlions and of the over-
all equilibrium of the cylinder. Consider the equations of statics for
the cylinder as a whole. Satisfaction of equilibrium in the longitudinal
direction requires that the sum of the stringer loads at any ring sta-
tion 1 must equal one-half of the applied load P. This condition is
expressed as

m=-1
bPig =

|+

J_

For n = .0, equation (5) gives

fo(1) = & ;2 SR (6)

Moment equilibrium gives two equations, one of which is automatically
satisfied because of the symmetry of the stringer load distribution around
the cylinder. The other moment equation is

-1
§ pij R cos J© = %?
J=0
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For n = 1, equation (5) is -

£(1) = & E P4 cos Jo -£ (7)

On substituting the values of fp(i) and £3(1) given in equations (6)
and (7), respectively, into equation (4), there results

m . m=1
P

2 2 L
Pyy = g+ 5 COB I+ > £n(1)cos nJs (8)

vl

Consider now the boundary condition at ring station 1 = 0. The
stringer loads here are

H

Poj = 5 Boj3

and substitution of this expression intoequation (5) yields

£,(0) = E (0sn

mG + Bpo + 8#,g> ) ®)

The equations of equilibrium and the boundary condition at 1 = 0O
have been used to obtain certain of the coefficients of the trigonometric
serles for stringer loads. The remainder of the coefficients are found
by use of the principle of minimum complementary energy, and this is the
next step in the solution.

NI

Expressions for shear flows and ring bending moments.- In order to
use the principle of minimum complementary energy, the shear flows and
ring bending moments must be found in terms of the trigonometric coeffi-
cients fn(i). Shear flows are determined by the consideration ofthe
equations of statics of a portion of any stringer j between two adjacent
rings 1 and 1 + 1. The forces on thls free body are shown in the sketch

below:
9 5L

[ ..
pid ————{ F—» Pii1,3
g ————

qi:J-lL

L
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Equilibrium of these forces requires that
Pisl,j ~ P13 * (qu - ‘11,3-1>L =0 (20)

Substitution of equation (8) into equation (10) yields

B or 5
1
Q- U,k é [fa(1+1) - £4(1)]cos nJe (11)

In order to find gy 3’ replace J with a dummy index k and sum both
sides of this equation over k from k=1 to k = J; that is, write

orm;

1
] 5 3 _
g (qik - qi,k_l) = - % % En(i+l) - fn(i)] kZ=l cos nkbd

(] 2]

When the indicated summaetions over k have been carriled out, the fol-
lowing equation is obtained: '

m-1

m
- = 1
Q1j - Y440 = - % ; En(i+l) - fn(i):l Eiz :Sl :?52')8 i ;]2:

The term qjp can be found from the condition that the total torque on
the section is zero. The resulting expression for shear flows is

m m-1

2 OF 7 rp(i+l) - £4(1) , (j 1)5 (12)
Qs s = = sin n{j + =

1 n=2 2L sin % 2

Bending moments are caused in each ring by a tangential loading
which develops because of the difference 1n shear flow in the sheet on
either side of the ring. The tangential load on ring i has the value

o o D=l
2 i 2 ppyfa(1)

MITH-LITT L 21, sin %

sin n(;] + %)5 (13)
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In appendix B, this load is applied to a clircular ring end the bending
moment in the ring is derived. Thils procedure results in the following
moment in ring i (see eq. (B9)):

o oop 21

] .
M) = - © S0 B s (Om ) (1)
n=

where

o0

(rm + n)@
Z cos
r==% (rm + n)2 Erm + n)2 - J:l

Hl(n; ¢) =

The sign convention for the moment is illustrated in figure 3; the con-
vention for measuring angle ¢ is shown in figure L4(a).

Energy analysis.- Now the stringer loeds, shear flows, and r
bending moments have been expressed in terms of the coefficients fn i).
The stringer loads are given in equation (8), the shear flows in eqpa—
tion (12), and the bending moments in equation (ik). These equations
are used in the minimization of the stress energy of the cylinder with
respect to fn(i).

By virtue of the symmetry properties of this problem expressed in

equatione (3a), (3b), and (3c), the energy in the structure to the left -

of ring 1 = 0 1is the same as the energy to the right of ring 1 = O.
Thus, equation (2) vecomes

U=2 % [AE(P;LJ PijPi41,5 + P~1+1,J ) 2Gt qidj

- R
2 ;f —eﬁmz(i,¢)d¢

Note that M(0,#) is identically zero because there 1s no difference in
shear flow -across ring i = O and, therefore, no tangentlal loed acts on
this ring.

ll‘.

vy
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Minimization of the stress energy with respect to fnp(i) results
in the following equation:

sty °
n
= api. aq
= J RBL 1
- g (Pi'i-l,J + hpic] + Pi—l;j/af (i) + Gt (qij afn(i) +

9g4.1,3 S AM(1+1,0) M(1,9) |
U-1,3 37_(1) ) +fo T M(i+l:¢)——afn(i) M(i,¢)afn( ;

oM(i-1,9)

SE(D) ag (15)

M(1-1,9)

The coefficlents £4(i) and £1(i) are known already for all values of i,
and fp(0) is known for 0< n < % Thus equation (15) needs only to be

considered for i1 21 and n 2 2. The expressions for the stringer loads >
shear flows, and r:l.ng bending moments are substituted into equation (15).
Then the following definite sums are needed (these can be obtained by

the procedure outlined in ref. 4):

m—1

cos nJd = 0 (o <n<m) (16)
3=0

and for the integers n and 1 restricted to the range 1< n < g- and

1< 1< g,
.
m-1 _
Zcos 135 cos njd = O (1 # n)
J=0
> (17)
= =
2<JL + 5n,‘§> (1 = n)
and

2
;-Zosin Z(ﬁ+32=>‘6 sinn(‘]+%)8=0 (1 # n)

~ (18)

N
o
-’

+
o
by
2]
N
N
o~
0
g
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The following definite integral, which 1s derived in appendix C, is also
needed: '

2

A
0 (1 # n)

2x
f E1 (2,8)8; (n,@)ag
0 > (19)

1'ESn<l +;5n,% (1 =n)

where

Sn = :ﬁ?: Drn2 = :ii: =

r=-e r==2 (rm + n)h'Erm +n)2 - i]a

and wvhere n and 1 sare restricted to 2§n§% and 2§z§g. A

closed form of S, 1s presented in appendix C but the series form con-

verges so repidly that it 1s usually more convenlent than the closed
form for use in calculatioms.

After substitution of the expressions for stringer loads, shear
flows, and ring moments into equation (15), the use of these definite
sums (16}, (17), and (18), end definite integral (19) results in the
following equations which express the condition of minimum stress
energy:

‘e,

For 1 =1,
fn(3) + 27,fn(2) + (28, - 1)fn(1) + 2(y, + 1)£,(0) = O (20a)
and, for 1 22,

fo(1+2) + 2y, fn (1+1) +28,Tn (1) + 2ypfn(i-1) + £,(1-2) = 0 (20b)

where
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ARE

C =22

Solution of finite-difference equation.- Equation (20b) is a fourth-
order finite-difference equation with constant coefficients. (Note that
the symbol i represents the index of the rings end bays and should not
be confused with the usual notation for V-1 which never appears in
this report.) Equation (20b) corresponds exactly with equation (24) of
reference 5. The general solution is presented on pages 23 to 26 of
reference 5 and on pages 28 and 29 of reference 6. It may be written as

fn(i) = (te_¢n>i ElnAln(i) + or,anAan(i):l +
(*-“e“’n)i EBnAJ_n(i) + %nl\an(i?:l (n22) (21)

where the upper sign is used when 7, < O and the lower sign when
yn > 0. The A's are as follows:

2 -1
For Dn=_(£.,’nT).>l,

7n

Aqp(1) = cos ix)

Apn(1) = sin 1X
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where
_ 1 -1{Bn - 1
X = -
n 5 cos 5
for D, < 1,
An(1) =
Agn(i) =
where

1 -1 En . 1
Xy = = Sl
n ) cosh 5

and, for Dy = 1,
Aln

Aoy

2
[ -

cosh 1X,

sinh IXn

Bn + 1 S '
(Cer) -

=1

i
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AR

In the inverse trigonometric and hyperbolic functions, the principal

values ere used.
by the positive branch of.

-1 -1}Bn - 1
\ifn E cosh [——2—

The argument y, of the exponenti

al function is given

2
+ 1
-

At a large longitudinal distance-from the applied load, the stringer
loads should approach the elementary distribution given by the first two

terms of equation (8); consequently, for n 3 2,

fr(1)—0 as i—>e.

The first term on the right-hand side of equation (21) satisfies this
condition; however, the second term does not and, hence, must be omitted.
The solutions, then, that are compatible with the boundary conditions at

infinity are: -

fn(l) = §niEL1nA1n(i) + aﬁlAa'l(iZl

(n 2 2)

(22) -
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where
by = te~Vn

Now the arbitrary constants a;, and ao, are determined. The first
a1p 18 obtained immediately. Substitution of 1 =0 into equation (22)
and use of equation (9) to evaluate £,(0) yields

£,(0) = aqp = ————— (n22) (23)

Substitution of equations (23) and (22) into the boundary eqpation (20=)
yields

81, + 2(7n + 1) P
m(? + 8

G2n = -
Bop §

where

B = toohen(3) + 2rntn2hen(2) + (28, - tphen(l) (s = 1,2)

The solution for the concentrated perturbation load is now complete
since the coefficients f,(1) are completely defined and msy be substituted
into equation (8) to give the stringer loaeds. The shear flows can be
found from equation (12); however, once the stringer loads are known,
it 1s simpler to calculate the shear flows by the use of the equatlions
of statics. Becsasuse of symmetry, the shear flows in shear panels adjacent
to stringer J = 0 are given by

_ _Pi0~ Pyi3.0
aio = -qi,—l - 21,

A1l the other shear flows can be found by the use of equation (10). If
desired, the moment distribution in the rings can be computed from
equation (14) and the thrust and transverse shear in the rings can be
found from the formuilas given in appendix B.
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Distributed Perturbation ILoad

Expression for stringer loaeds.- The dlstributed perturbation load
is shown in figure 1(b); let S represent the magnitude of the total
force distributed along stringer j = O between rings i = 0 and 1 = 1.
From figure 1(b) it is seen that——

P13 = “Poi41, 1z (24a)
Ay = 41,3 . (1 z1) (24p)
M(1,8) = -M(-1+1,8) (£ 2 1) (2hec)

At ring station 1 = 1 and to the right of this ring, the stringer
loads can be represented by a trigonometric series of exactly the same
form as equation (%)

m m-1
Nl

Pig = > fp(i)cos nid (25)

n=0

except now 1 2 1, and the coefficients fy(i) are different from those
obtained for the preceding case of the concentrated load.

Evaluation of fo(i) and £7(i1).- As in the preceding case, the

first two coefficients fp(i) and £1(1) cen be obtained from the equa~-
tions of statics, and the results are the same as before. Equation (25)
becomes o - - - ; S ==

m Me1
3 oY 5
Pij = g% + % cos J& + _gé; fn(ileos njd (1 21) (26)

With the concentrated perturbation load, all the coefficients fn(o)
were easily found because the stringer load distribution at ring sta-
tion 1 = O was known. Here no such distribution is known. In order .to
determine the boundary condition at bay i = O, the effect of the dis-
tributed perturbation load on the equilibrium of portions of stringers
in this bay must be Investigated.

Expressions for shear flows and ring bending moments.- Away from
bay 1 = O the shear flows and ring bending moments are of the same form

“
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as for the concentrated load. The following expression for the shear
flows is obtained by use of equation (10):

n m-1

22 £ (141) - £a(1)
+ -
ay = - E n n sin n(,j + -]2=>'5 (12 1) (27)
n=2 2L sin 32
The ring bending moments are obtalned in asppendix B as
o, o-1
. 2 R2m >
M(1,8) = - ot 2110 (1)E (2, 8) (1t 22) (28)
n=
wWhere
= cos(rm + n)@
B (n,8) = >

F=e (rm + n)zlzrm + n)° - ZIJ

The applied force in bay i = O may be written as SBgp4. Consigder,
now, the equilibrium of a portion of any stringer J between ring i = O
and ring 1 = 1. The forces on this free body are shown in the sketch
below:

gL s
—.

e
Pt |
Poy ——— > P

R ——
90, 3-11
L

Equilibrium of these forces requires that

P1y ~ Poj * (%J - qO,.j-l>L - gy =0
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Because of the antisymmetry property expressed in equation (24&), the
equilibrium equation becomes

2py 4 + (205 - qo,j—l)L - 8Bgy =0 (29)

It is convenient, now, to expand the Kronecker delta 603 in &
finite trigonometric series, : :

or

803 = :E:: dn cos nJd (30)

n=0

nIg

Multiplying through by cos 1j5 &and summing over j from O to m - 1,
yilelds the trigonometric coefficients d,. The result is

dn = = (31)

m(l +8p0 + B m)
n,§

Substitution of the expression for stringer loads, equation (26), and
the trigonometric expansion for Soj, equation (30), into the equilibrium
equation (29) yields

%3~ %,5-1=F > [S% - 2f(1)] cos ngo
n=2

In order to find Q05> this equation can be treated in the same manner
as equation (11); that 1s, replace J by a dummy index k, sum from
k=1 to k =J, and then use the condition that-the totsl torque on
& cross sectlion in bay i = O must be zero. This procedure. results in
the following expression for the shear flows in bay i1 = O:

Bor Bl (1)
_ 2°m " 1
Qo5 = E gin n{J + =)8 (32)
J =3 L sin 2 ( 2)

2

The expression for the bending moment in rings i = 1 and 1 = O is
yet to be found, as thls expression differs from that for the moment- in
the rest of the rings given in equation (28). The moment -in ring 1 = O
is the same in magnitude as that in ring i = 1 but opposite in sign.
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The tangential loading on ring i =1 is given by

o o B-1
. . Oi £a(2) - 3£,(1) + 8dp . n(j . l)a
1~ o ‘= oL sin B 2

2

By analogy with equations (13) and (14), then, the bending moment in
ring 1 = 1 can be written as

gorm-l

2 2
M(1L,¢) = - > Ef%[ig(a) - 3£4(1) + Sdp [Hy (n,¢) (33)
n=

A1l the stringer loads, shear flows, and ring bending moments have
now been expressed in terms of the coefficients fn(i). The stringer
loads are given in equation (26), the shear flows in equations (27) and
(32), and the ring moments in equations (28) and (33). It remains to
substitute these expressions into the equation obtained from minimization
of the stress energy of the cylinder with respect to fp(i).

Energy analysis.- By virtue of the symmetry properties in this
problem, given in equations (24), the energy in the structure to the
right of bay 1 = O equals the energy to the left of this bay. Equa-
tion (2) for the stress energy cean be written

U= %j o Pl.j 90 > i % _L'(Pi.jz + P1jPis1,5 * Pisl :12> +
=0 \OAE aet J =7 $=o|6aE ’d ’

ST PED Y e WA (34)

i=1

Minimization of the stress energy wilith respect to fn{i) results in the
following equations:
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U ' ' S -
orp(1) ° -
- % A (5014 + P ) 1 + RBL( Sa1 >
S5 [BAEN T T P2 ar(1) | 266\ 3ep(1) * 903 af n(1)
25 M(2,0) M(1,9
l 2: ———{— ’

J; EIE( ¢)afn(1) ¢) ofp(1 ):l¢ (35)
and
U
ofn(1)

+1 + aqu
AE(Pm, Pij + P11, J)Bf— Tt syt
day_ aM(1+1,¢) oM(1,
94-1,3 fIiI J{) :l f EI I:(i Ly Afn (1) + M1, 83 ((1?)

M(i—l,¢)aM(i(;L;¢:] ag (12 2) (36)

Note that equation (36) is the same as equation (15), except here it is
valid only for 1 2 2.

The stringer loads, shear flows, and ring moments are substituted
into equations (35) and (36), end then the definite sums and definite
integrel derived in the preceding sectlion are used to simplify these
equations. After simplificatlion, the followlng equations result:

For 1 =1,

- byy - 2
£a(5) + (27 - Ea(2) + 2(pg -~ 7)En(1) = 882 e ) ()

¥



NACA TN 3199 : ; : 23

for 1 =2,

() + 27,2, (3) + 2B,n(2) + (27, - L)Ex(1) = -Sdp (370)

and, for 1 2 3,

o (37c)

Fn(i+2) + 2ypfn(i+1) + 28,fp(1) + 2y,Fn(i-1) + £,(i-2)

Solution of finite-difference equation.- Equation (37c) is the same
as equation (20b); therefore, the solution to equation (37c) is

£(1) = byt [e1nfin(1) + apphoq(1)] (nZz2) (38)

which is the same as equation (22) except for the values of the srbitrary
constants a1n and ap,. These constants are found by the substitution of

the solution (38) into equations (37a) and (37b). This procedure yields
two simultaneous aslgebraic equations In a3, &nd oapp, and their solu-

tion gives

o Bn - kyp - 2 t 0
2n % 2n o8
a’l’[l =
n,5
Bn = byn - 2
oo = an + Fin % o8
OnTon = Tinflon m<} +5, m>
. 1z

where d,, the coefficient in the trigonometric series for the Kronecker
delta Bpj, has been replaced by its value as given in equation (31),

and where the Q's and I''s are given by

Qgn = Cn?Asn(3) + (2y, - l)gngAén(2) + 2(Bn - 7n)lnfen(1) (s = 1,2)
(39a)
sn = §n¥ﬁsn(4) + 27n§n3Asn(3) + 25n§n2-Asn(2) +

(27n = 1)6 Aan(1) (s =1,2)  (39v)
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The coefficients ﬂn(i) are now defined for the distributed perturbation
load and msy be substituted into equation (26) to glve the stringer loads.
The shear flows can be found from equations (27) and (32), but, agein,
once the stringer loads are known shear flows can easily be found by

use of the equations of statics. The shear flow in the panels adjacent
to stringer J = O can be found by considering symmetry:

In bay 1 = 0

s - 2p
%0 = ~90,-1 = g

and, outside of bay 1 = O,

Pio = Pit1,0
2L,

(L 2 1)

20 = =94,1 =

The other shear flows are found from equation (10), as before. If
desired, the ring moments cen be obtained from equations (28) snd (33)
and the ring thrust and transverse shear can be-found from the equa-
tions given in appendix B.

Shear Perturbation load

Expression for stringer losds.- The shear perturbation load is shown
in figure 1(c). The maegnitude of the load per unit length applied along
the stringers and rings bordering shear panel (0,0) will be represented.
by Q. From figure 1(c) it is seen that the longitudinal symmetry prop-
erties in this case are the same as thoseé for the case of the distributed
perturbation load given by equations (24).

The shear perturbation load is self-equilibrating and gives rise
to stringer loads which are antisymmetric about panel row j = 0. For
1 2 1, the stringer loads may be represented by

"Pyy = fn(1)sin n(3 - )5 (40)
Pij < nlils n< 2)

where the coefficients fh(i)_are_different from those in the two pre-
ceding cases. The term corresponding to n = 1 wvanlishes because it
represents an elementary bending stringer-load distribution, and the
shear perturbation load does not requlre this distribution for overall
equilibrium.

LW

0

¥
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Expressions for shear flows and ring bending moments.- None of the
coefficients f,(i) in the trigonometric series (40) can be found from
the equations of statics. Furthermore, the boundary condition at
bay 1 =-O0 must be determined from a consideration of the effect that the
shear perturbation load has on the equilibrium of the portions of stringers

in bay 1 = O and on the bending moment in the rings bounding this bay.
Thus the energy approach muist be used immedistely and the first step in

this approach is to write the shesr flows and ring moments in terms of
fn(i), the coefficients of the trigonometric series for the stringer
loads, equation (40).

Qutside of bay 1 = 0, the satisfaction of the equations of statics
for the portions of stringers between adjacent rings yields equation (10),
the same as in the two preceding cases. Substituting equation (40) for
the stringer loads into the equilibrium equation (10) and following the
same procedure used to obtaln equetion (12) yields the expression for
the shear flows due to the shear perturbation load:

L or Bl
2 2 £ (1+1) - £,(1)
= n n - - 2
Qi J Z ——5—— cos njd (121 (1)
n=2 2L sin E;

The tangential loadings on the rings to the right of ring i = 1 are

R oy D=1

2 S 2 A1ifn(i) .

MU & pem®m ™
2

In appendix B this load is applied to & circular ring and the following
expression for the moment in the ring is obtained (see eq. (B13)):

L or B=l :
u(,8) == 25 % BB ae (1)m(n,0) (1z2) @)
n=2 -

Where

o . n)¢
(n,8) = > (~1)F - sin(rm +
e r=-0 ( (rm + n)2lZ?m + n)2 - i]

The convention for measuring angle ¢' here is a little different than
before and is illustrated in figure 4(b).
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Now, the shear flows in bay 1 = O and the bending moments in the
rings bordering bey i = 0 must be found. Consider the shear flows in
this central bay. The shear perturbation losding applied at bay 1 = 0
may be written QﬁoJ. Then the forces on the portion of any stringer 3

between ring 1 = O and ring 1 = 1 are as shown in the sketch below:

Equilibrium of these forces requires that "
P1; - Pog + (%05 = %,3-)L + a0, 3-1 - Boy)L = 0

Because of the antisymmetry property, equation (24a), the equation of
equilibrium becomes S .

2915 + (203 - ,3-D)L + a0, 3-1 - Boz)L = 0 (+3)

The substitution of the stringer loads, equation (40), into the equilibrium
equation (43), and the introduction of the trigonometric expansion for the
Kronecker delta 8g3, equation (30), yields the following equation:

m-1
or -

40 - 90, j-1 = -% Z 2fp(1)sin n(j - %)5 - .c.:os(,j - 1) - cos 35] -

n=2

M}

or B=i

Z 2 Qd.nEos n(j - 1)5 - cos nJS___-l
n=2

nIB
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Now 403 can be found by replacing J with a dummy index k, summing

over k from k=1 to k = Jj, and using the condition that the torque
on & cross section within bay 1 = O balances the applied torque. This
procedure results in the following equation for the shear flow in the
central bay:

£
Qg = Qdo + Qdj cos Jb + ( n(l)

L sin nd

n= 5)

+ Qﬁ%)cos njd ()

Consider the bending moment In rings i = 1L and 1 = 0. The moment
in ring i = 0 is identical in msgnitude to the moment in ring 1 = 1 but
of opposite sign. The tangentiel loading per unit arc length on the
portion of ring i = 1 between stringer J and stringer j + 1 is illus-
trated in the sketch:

Cboj

N\
T - \\ - - g, stringer J + 1
I %3 93

- - g stringer J

Adding these tangential loads and introducing the series expansions for
d03 and a3 3 and for 803 yields the total load per unit arc length

on ring 1 = 1%

m m-1
e fn(2) - 3fn(1) _
2

By analogy with equations (13) and (1) the bending moment in ring 1 = 1
is

m

M(1,9) = g"' B [ry(2) - 3%a(1)]Ha(n,9) - s)
n=
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Expressions for stringer loads, shear flows,:and ring moments have
been written in terms of the coefficilents f,(i). The stringer loads are
given in equation (40), the shear flows in equations (41) and (4k4), and
ring moments in equations (42) and (45). These expressions are ready
to be substituted into the equation which results from minimizing the
stress energy with respect to fn(i).

Energy analysis.- Because the longltudinal symmetry relations which
exist-for the distributed perturbation load, equations (24), also exist in
the case of the shear perturbation load, the stress-energy expression used
in the distributed-load problem can be used here. The expressions obtained
on minimizing this stress energy, equations (35) and (36), are also appli-
cable here. BSo the stringer loads, shear flows, and ring moments Just
derived are substitubed into equations (35) and (36). At this stage in
the two preceding cases, certain definite sums and a definite integral
were introduced to slimplify the equations. A similar procedure is
followed here. - o : :

The definite sums which are of_interest are.

m-1
z sin n(.j - :—2L-)8 =0
3=0 ‘

and for the integers n and 1 restricted to the range 1< n< % and
<3<m_ : '

m-1

(1 # n)

]
o

cos 1J® cos njd
J= .

(1 =n)

1
IE
=
-+
o
S
H
S

I;i_i sin Z_(J - 15')5 sin n<j - -21-)5 =0 (1 # n)

i
nis
s
+
o
B
-~
o
(]
E
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The definite integral, which is derived in appendix C, is

- .
fo £5(1,)Ha(n, 8)ag = O (1 4 n)

1
$
T
+
[0
[»]
RE,
—
o~
n
B
e

where n and 1 are restricted to 2S5 n §3% end 251 S %. After
simplification the following equations result:

For 1 =1,

£n(3) + (27, - 1)fp(2) + 2(Bn - 7n)fn(1) = —2Lan<én = Yrm - lf)sin D

3 2
(46a)

for 1 =2,
o) + 27ptn(3) + 28pfp(2) + (27, - 1)p(1) =0 (46b)

and, for i 2 3,

fn(i+2) + 2ypfp(i+1) + 2Bpfp(i) + 2ypfa(i-1) + £,(1-2) = 0 (46c)

Solution of finite-difference equation.- Equation (46c) is the same
finite-difference equation for which the solution is written in the two
preceding sections. Substitution of this solution, equation (38), into
equations (46a) and (46b) gives two simultaneous algebraic equetions
for ojn and Gopns the arbitrary constants. Solution of this system
yields
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Bn - ¥yp - 11
Iin 5 sin 2 -
Qnlon = Tipfon m(l +-8n-g>
2
2

&2n =

The Q's and TI''s in this case are precisely the same as in the pre-
ceding case of the distributed perturbation load; Qg, 1s given by eque-
tion (39a) and Ty, by equation (39b).

With the coefficlents fn(i) known for the shear perturbation load,
the stringer loads are obtalned from equation (40) and the shear flows
can be found from equations (41) and (k). For panel row j = O, the shear
flow equations become

gork_l;f(il) fn(i)
. + -
a0 = > — — (121)
n=2 2L sin =
and
oo 21
39, 2 T[—fn(l) . 2q

2

0 = =+ Zé_
m n= 'i sin ns m(l + Sn,%)

When the shear flows in panel row J = O are known, it is simpler to
compute the -remainder of the shear flows by use of the equations of
statics rather than equations (41) erd (4k). In shear peanels (0,1)
and (0,-1) adjacent to the loaded panel, the shear flow is glven by

All the other shear flows are found by use of equation (10). If desired,

the ring bending moments can be found from equations (42) and (45) and
the ring thrust snd transverse shear can be calculated from the formulas
given in sppendix B.

a
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LIMITING CASE OF RIGID RINGS

If the ring bending stiffness is allowed to increase indefinitely,
the rings approach complete rigidity in bending, the parameter C approaches
zero, and a considersble simplification results. For this limiting case,
equations (20) for the concentrated perturbation load reduce to

fa(1+1) - 2 2B Fa(1) + fx(1-1) = 0 (121) (u7)
743
where

An = 3B52 - 1 + cos nd
Bp = 3852 + 2(1 - cos nd)

This can be shown easily by multiplying equations (20) through by C
and allowing C +to aspproach O. Equation (47) is a second-order finite-
difference equation with constant coefficients. The same equation,
together with its general solution, is given in reference 6, page 31.
The solution compatible with the boundary conditions at infinity can be
written as

£a(1) = aee™) (18)

Where

cosh Ay = ,%ﬁ

and where the upper sign is taken when A > O and the lower sign when
An < O.

The arbitrary constant ay is determined by evaluating the solution,
equation (48), for 1 = 0 and introducing the value of £n(0) gilven in
equation (9). The result is identical to aj, glven in equation (23)

= E >
nz 2
Un 5 ) ( = )
2
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o

Equations (8) and (12), the expressions for stringer loads and shear
flows, respectively, used before in the case of the concentrated pertur-
bation load are still valid. The substitution into-these expressions of
the solution (48) with the constant ap as found above yields the stringer
loads and shear flows due to a concentrated perturbation load when the
rings cen be consldered rigid. —

\x

For the case of the distributed perturbation load, equations (37)
reduce in the limit to

(-An)fn(2) + (2Bn + An)fn(1) = 3B82Sd,

fp(i+l) - 2 ]?-A;lrl fa{l) + fp(1-1) = 0 (1 2 2)

The arbitrary constant an in the solution (48) is

6852 S
Up = e

An xe”Mn 4 1> m(l * an’%)

For the shear perturbation load, equations (46) reduce to

(-Bn)fn(2) + (2Bp + Ap)fn(l) = -6LQiLBS sin % v

fa(i+l) - 2 %n’% fn(i) +-fu(i-1) = 0 (1 2 2)

The solution is again equation (48) and a, becomes
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CONCLUDING REMARKS

Solutions have been cbtained for the stress distributions caused
by three types of loading on infinitely long, cilrcular, semimonocoque
cylinders with flexible rings. The solutions are adaptable to the con-
struction of tables of influence coefficients which glve stringer loads
end. shear flows in the neighborhood of the perturbation load due to a
unit megnitude of that load. The perturbation loads are the tools of a
method described in NACA Technical Note 3200 for the stress anslysis of
circular semimonocogue cylinders with cutouts.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., April 22, 1954.
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APPENDIX A
SUMMARY OF SIGNIFICANT EQJATIONS

The formulas and parameters féquired for computing_the stress dis-
tribution due to concentrated, distributed, and shear perturbation loads
are collected in this sppendix for reference.

Stringer Loads

Concentrated perturbation load (see fig. 1(a)):
m .. m-1
2
Piy = é% + g cos 35 + E fn(i)cos njd (1 20)

where P is the applied load.

Distributed perturbation load (see fig. 1(b)):
noop BoL
S

~ s 2 2
P1j = o + = cos §o + n§=2 fn(i)cos nJd (1

1

nv
c

where S 1s the total applied load. - . - : o -
Shear perturbation load (see fig. 1{c)):

M-~
ooy Bl

2 2
Pyy = ZE: fn(i)sin n(j - %95 (£ 21)
n=2
Shear Flows
Concentrated perturbation load (see fig. 1(a)):

For' the shear panels in panel row j = O,

Pio -~ Pi+1,0 -

q. =
10 oL,
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and, for the remainder of the shear panels,

Pij = Pi+1,
i3 = J T ] +.qy,3-1 (3

nw

1)

Distributed perturbastion load (see fig. 1(b)):

For the shear panel (0,0),

_ 8 - 2pyp
oL,

900

for the remainder of the shear panels in panel row.j = O,

Pi0 = P1+1,0 (1> 1)

q =
i0 o,

and, for all other shear panels,

Piyg = P1s1,3
N 3 = J I 2 4 Q1,3-1 (3 2 1)

Shear perturbation load (see fig. 1(c)):

For the panel about which the load is applied,

m .. ;-1
3q 2 272 (1) 2Q
Q0 = F * = T
n=2 L sin 5> m(l + Sn,g)
2

for the remainder of the shear panels in row J = O,

o o -1
2 2 fo(i+1) - £,(1)
Q0 < = 2 1)
n= 2L sin ry

-
v
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for the shear panel (0,1),

901 = 90 -

for the remainder of the shear panels in panel row j = 1

931

_ P11 - Pi41,1

L

L

and, for all other shear peanels,

a1

Evaluation of the Trigonometric Coefficients fp(i)

Basic paremeters:

Auxiliary parameters:

Bn =

Yn =

= P13 T Pis1,g

L

+ 440

9,3-1

for Flexible Rings

1
QI

A
bt

ol

Q
n

2

NACA TN 3199

R

nw

(121)

nv

(3 22
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Discriminating parameter:

<?

=2mn—n

7n°

Trigonometric coefficients:

22(1) = &o' [iandia(1) + cpndon(1)]

Where

Mn(il) = cos iXp

cosh iX,

Aon(1) = sin iXy

=1

sinh 1X,

2
-1 + 1
%— c:oss"llgn2 - t/(BnE > - 7n2]

2
1 1|Bn -1 Bpn + 1) o
5 cosh S \/( > - 7n

>
B
]

2
-1 + 1
%cosh‘_l an + /(Bng ) - 7n2

¥n

(D, > 1)
(D, = 1)
(b, < 1)

(Dp > 1) -

(Dp = 1)
(D, < 1)

N

Dp > 1)

(b, < 1)
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Arbiltrary constants for concentrated perturbation load:

P
m(l + 5n,%)
oo = Oy, + 2(y, +°1) P
Bon m(l + Sn,g)
where P 1s the applled load and
Ben = Eohan(3) + 2rptnhen(2) + (2B, ~ 1)EAgy(L) (s = 1,2)

Arbitrary constants for distributed perturbation load:

Bn - ¥yp - 2
Pon n 3 + Slop o8 )
*1n 7 T, Q
QT = Tinfon m(l + an,g)
Bn = ¥7p - 2
A 5 oS
agn = - :
Qnlon = Tinflon m(l + 8n,%>
where 8 1s the total eppllied load and
Qgn = tnohen(3) + (27 - 1)6n2Aen(2) + 2(By - 7n)tnhen(L) (s = 1,2)

Psn = gnFAsn(h) + 27n§n3ABn(5) + 2Bn§n2Asn(2) + <27n - l)CnAsn(l)

(s = 1,2)

€5

o
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Arbitrary constants for shear perturbation load:

14

Bn - ¥yp - 11
pp P M
3 2 L,
G'JJJ.:-
Ynlon = Tinflon m(l + Bn’%>
g Pn = ¥7q - 1t in 35
Iin - 81ln
oo = 3 2 haL
Qnlon = Mnfon m(l + Sn’g)
2

where Q 1s the applied load per unit length.

Evaluation of the Trigonometric Coefficients f,(1)
for Rigid Rings
Basic parameter:

A
bt

Y
o
I
Q=
v}
o

4 Auxiliary parameters:

An=31382- 1+ cos nd

Bn=3]382+2(l- cos nd)
7\n=cosh"lB—n-|
An

Trigonometric coefficlents:

1
w0 - offy ™)
5}
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Arbitrary comnstant for concentrated perturbation load:
P
mfl + B
(*on2)

Arbitrary constant for distributed perturbation load:

an=

6ms° : s

- m{l +3_ m
An(——An— e l) ( n,2)

Arbitrary constant for shear perturbation load:

%:

13y

ak
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APPENDIX B
BENDING MOMENT, AXTIAT, THRUST, AND TRANSVERSE SHEAR IN RINGS

Expressions will be developed for the bending moment, axial thrust,
and tramsverse shear 1n a circular ring under tangential loads such as
those which arise from the differences in shear flow across a ring in a
circular semimonocoque cylinder.

Two cases must be considered: One case occurs with the concentrated
and distributed perturbation loads, where the ring loading is anti-
symmetric sbout stringer j = O. The other case occurs with the shear
perturbation load, where the ring loading is symmetric gbout panel
row J = O.

Concentrated and distributed perturbation loads.- For the concentrated
and distributed perturbation loads, the tangential loading on ring i has
been written in the form of a finite trigonometric series (see eq. (13))

o o Z-1
Fi: = - =22 2b sinn.j+3'-5 (B1)
13 7 %3 © U-1,9 — ni 2

where

£y1Fn (1)

o'}
2L sin >

bni = (IJ. g 2)

This ring load has a stepwise variatlon around the ring, being constant
between stringers end having jump discontinuities at the stringers. The
limitation that n 2 2 ensures that the ring is in equllibrium.

The procedure will be to expand each term of the series (Bl) in an
infinite Fourier series in the varisble (. For each harmonic of the
Fourier series, that is, for a continuous sinusoildal tangential force
distribution on the ring, the moment, thrust, and shear in the ring are
easily found (see ref. 5, p. 33, for example). On the basis of inexten-
sional deformation and the neglect of transverse shear distortions, the
results are as follows: If the tangential load on ring 1 1s given by

&,y cos nf + bpy sin ng (n 2 2)
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then the moment, thrust; and shear in this ring are, respectively,

(4,8) = ~Ens —2 §e5y B aonng]
i = =8pn3 —— 8In nP + b cos n
*oits " (@2 - 1) ni n(n2 - 1)
T - _. R = R
n(i,8) = -8, ——— n sin nf@ +-bpy ——— n cos ng > (B2)
ne - 1. n2 - 1
v (1,8) =7, B cos ng + b B s nfd
n\-’ i n2 - 1 ni 2 - 1 |

Figure 3 shows the sign convention used in writing equations (B2).

Consider, now, one term of the series (BL). To expand this term
in a Fourier seriles, write o

bpi sin n<§ + %)a = z;: <Cr)ni.5?? @ | (B3)

r=n

where the (cp),;'s are the Fourier coefficients. It 1s obvious that -

the first hermonic which will occur in the Fourier seriles in equation (B3)
must be that for which r = n. The other harmonics, then, will be added
to this to build up the step .-shape of the loading function. The con-
vention for messuring angle @ in this case 1s illustrated in figure 4(a).
The index J can be thought of as a function of ¢, that is: when
0<@<®, J=0;when 8< @< 25, J=1; and so forth.

In order to carry out the expansion, equation (B3) is multiplied
through by sin 1 and integrated from 0O +to 2x

m- (3+1)8
if bpi sin n(,j + %)5 sin 1§ ag
3=0 Y35

o )
JC ZE:.(cr)ni sin r$ ein 1@ 49

r=n
After integration, the right-hand side of this equation becomes

(cl)niﬁ

a

L)

et
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by virtue of the orthogonality of the trigonometric functions. The left-
hand side becomes ’

‘2 sin -?'—g- m- 1
— S py sin n(3 +—)5 sin z(:j +l)6
2 e ) 2

on carrying out the integration. From reference 4 it can be shown that

" i-n  m

m
E sin n(,j + %)5 sin Z(,j + 12-)8 = % (-1) ™© Ji.q - (-1) J14m
I= Y o

where Jp =1 1if r 1s an Integer, anmd J, =0 1f r 1is not an integer.

Thus the Fourier coefflcients are given by

- +n
sin B| £2 Lo

2 m m
(e1)yy =2 bnt —5—|(-1) ~ T3 o - (-1) 7 JTyuy

m m

The nth term of the tangential loading on the ring is

o l-n l+n sig B
. m =z
bpi sin n(,J + %)8 = % bni E (-1) Jyn - (1) ® Ji4n|— sin 1§
l=n o m i
(BY)
By use of the properties of J, +this summation can be rewritten
1 o © - sin(rm + n)g-
b si +—>5=—b E -1 gin{rm + n -
ni nn(‘j 2 x ni r=0( ) rm + n ( )¢
o sin(rm - n)§2-
E (-1)¥ sin(rm - n)¢@ (B5)
r=1 m =1



Ly : NACA TN 3199

On expansion by the sum and difference formulas of trigonometry and with
the use of the fact that—md = 2x, it is found that—

r nd
(-1)"sin =

sin(rm + n)%

(B6)

sin(rm - n)% = (—l)r+lsin %5-

When equations (B6) are substituted into equation (B5), the following
relationship results: B

b,y sin % 2&_- sin(rm + n)@ N i sin(rm - n)¢@

b,y sin n(j + l)s =
=5 ™m + n =T rm - n

2

Alg

0 .
m 5 sin(rm + n)@
=—=D>D sin — B
Z v : rZw — (87)

From the first of equations (B2) it is seen that if-the tangential
loading on the ring is given by the right-hand side of equation (BT)
then the bending moment in that-ring is

M,(1,8) = R2 2 by sin D H1(n,9) (B8)
where

[e]

iy (n, ) = Z cos(rm +-n)@
= (em + n)2 Erm + n)2 - J:_l

Equation (B8) gives the bending moment in =& ring which carries a
tangential load distributed according to one—term of the series of-
equation (Bl). When the ring is loaded by the sum of such gtepwise
terms, as in equation (Bl), then the moment is given by a sum of terms
like (B8). 8o the bending moment in ring i is

o oo Bl

M(i,8) =2 S °

R2 B vy sin 2 H (n,d) (B9)
<=5 it 2

L3

1t
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For completeness, the expressions for axial thrust and transverse shear
can be written in a similear manner -

m m-1
2273
T(1,8) = R 2oy sin 2 Ky(n,@)
n=z2
2 or 2l
v(i,8) = Z R % bny s8in —I]2§ L1(n,®)

=3

where

qaeg) = > Snlm ol

o0

L1 (n,8) = :E: sin(rm + n)g@
: r=’°°(rm+n)Krm+n)2—J:|

Shear perturbetion load.- In the case of the shear perturbation
load, the tangential loading on ring 1 is glven by the finlite trigo-
nometric series

2
Fij = gy = Q-1,5 = > 7 ayy cos ngp - (B10)

where

_ Dy3fp(1)

nd
2L, sin >

~
e

v
L

Equation (B10) can be treated in a manner analogous to the handling of

equation (Bl). That is, each term of the series in equation (B10O) can

be expanded in a Fourier series. Then the moment, thrust, and shear in
the ring are written immedistely.



1E NACA TN 3199

Anslogous to eguation (B3), write-—

s

[22]

api cos njd = Z (cr?ni cos g o (B11)

¥=n
where, now, the angle ¢ is as shown in figure 4(b). If both sides of equa-
tion (Bll) are multiplied by cos 1 and integrated from O to 2x, there
results for the Fourdier coefficients:

15

2 sin == m-1
(cl)ni = —_-:r-z__g_ ani E cos njd cos 1id
J=0 '

It can be shown (see ref. 4) that

cos njd cos 1J5 = I§n<JZ-n + Jl+n>

m m

so the nth term of the tangentlal loadling on the ring is

15 -
o) sin —
2
eni cos nid = ;-‘;- 81 E Jien + T14n — cos ¢ (B12)
i=n\ "p m . : .

This summation becomes

00

apy sin _rg_ Z (-1)F cos(rm + n)@

—_ m + n

ani co8-njd =

alg

which corresponds to equation (B7). Then the bending moment is

oo, m-1 .
2 2 om nd ]
M(1,8) = - E R® 2 apg sin 75 Bp(n,d) (B13)
= - Te
Similarly, thrust and shear are
ooy 21

2 2 | | .
T(1,6) =- > R 2 ans sin Ezé Ko(n, @)

n=2
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and

where

v(i,8) = ZT

[v2]

Ap(n,$) = > (-1)7

Y==00

(2]

Ko(n,@) = >

r=—m

2]

Io(n,g) = > (-1)F

r=—cs

REZans sin B 1p(n,¢)

sin(rm + n)¢@

(rm+n)2|zrm+ n)2 - ]]

(-1)F sin(rm + n)@

(rm + n)2 - 1

cos(rm + n)@

(rm+n)l£—m+n)2-1;l

b7
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APPENDIX C
EVAIUATION OF DEFINITE INTEGRALS

In order to minimize the stress energy it is necessary to investigate
the following definite Integrals:

o .
fo Hy(n,$)8;:(1,08)ag = f 2 Dpyp cos(rm + n)@ i Dgi cos(sm + 1)@ 4@

Ac—®

(c1)
and

2. 2 0 o
fo i Hp(n,$YEa(1,4)ag =f0 " S (-1)Dpy sin(rm + n)g Y (-1)°Dy; sin(sm + 1)¢ ag

r==00 S5= =00
(c2)

where

1
(m+n)2Em+n52- J;_]

and where integers n and 1 are limited to the following ranges:

Drn =

2 <

A
B

2

BA
-
A
piE e

Consider the relation (Cl). The right-hand side can be written
oo o 251 ’

( 2x
% Z Z D, Dg; cos{m + n - sm - 1)@ ag +f cos(rm + n +
0 0

) © ®
sm + 7')¢ dﬂ = %‘ Z Z DrnDsZ,(Srm-f-n,sm-l-l + Srm+n,-sm-l>2‘f
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Now, by virtue of the limited range of the integers n and 1, the following
relations can be written:

?

8rm+n,sm+7, = Ss ! = Bgrdin
m

s} =8 =5 _19;, m 3 _ m
rmtn,-sm-1 §,-r - L0 8,~-r=1"1,5 n,5

Thus, when 2< n< 5, equation (Cl) yields

I
o

21
fo m; (0, $)E1 (2,8)d = (2 # n)

n)

]
B [\
Y

I
e
=
~
o~

I

If n= %, the following equation is obtalned:

- faﬂ Hl<g: ¢>Hl(2': ¢>d¢ i( m +D gD_r_l,%):t

Since

QT ——

S R
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it i1s found that when n =

s

27 x
L mEom@duw -2 3 5, 5% = 25
To summarize, then,

(1 #n)

!
o

25
L Hl(n,¢)H]_(l:¢)d¢ =

Sn:t<l + 5n,%> (1 = n)

Consider the relation (C2). It is handled in & menner analogous to
the treatment of (Cl). Equation (C2) can be written

L/OQKHE(H:WHQ(7',-¢)('1£"5= i i (‘l)rDrn(’l)st%(srmm,smz - Brmn,-sm-l)a“

P=m® S=em00

= Z Z (-l)r(-l)SDmDszCésran-85’_1._1511’%51,@«

L=l S=wm00

B

For 2<n< 53,

21
fo Ho(n,@)Hpo(1,8)ag = 0 (1 # n)

n)

™M
W)
gl\)
A
4

£
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Ir n=g,

¢

JRETCHACOTE

H
l|
8
~

|
M
il
¥ o
1
~
1
L)
H
~~
]
c
1
5
)
=]
'
¥
-
Y

I
B
A

Thus the definite integral (C2) gives precisely the same result as (Cl)

|
O

ox
__j; Hp(n,@)Ho(1,8)ag = (1 # n)

ty

sn::<1 +8 m (1 =n)
. n’§
The sum

[+2]

o 5 1
Sn= > Dmt=

=" = (rm + n)h' l?_rm + n)2 - g]e

can be expressed in closed form with the aid of formula 6.495, number 2,
reference 7. The result is

=é2+cosn5 + 82 _fcoszﬁcos&-l_'_z 5 sin &
12 (1 - cos m3)2 1 -cosnd L (cos n8 - cos )2 Y cos nd - cos &

However, the series form of 8,, because of its rapid convergence, may
be more convenient than the closed form for use in computation.

L)
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Figure 2.- Portion of typical cylinder.
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Figure 3. - Positive sense of quantities used in analysis.

(a) For concentrated and (b) For shear perturbation load.

distributed perturbation loads .
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Figure 4 .- Conventions for angular coordinate ¢ .
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